IMOLA Workshop – Smart Lighting 2014

Technology development for a flexible, low-cost backplane for lighting applications

M. Cauwe¹, A. Sridhar², T. Sterken¹

¹ imec - Cmst, Technologiepark, Zwijnaarde, Belgium
² Holst Centre/TNO, High Tech Campus, Eindhoven, the Netherlands
Overview

- Application requirements
- Technology specifications
- Process flow
- Technology developments
- Technologies for increased flexibility
- Conclusions
Application requirements

Interactive, modular, flexible, large-area, OLED-based lighting system on low-cost foil with built-in intelligent light management
Technology specifications

PI: € 20 per m²
Cu: € 6 per kg
PET: € 2.0 per m²
Al: € 1.4 per kg
Technology specifications

- **Integrated power converter**: 40V DC to 0...1A DC
- **Embedded inductor**
- **OLED**
- **Ferrite**
- **Backplane**

Glass/Foil
- \(I \leq 500 \text{ mA} \)

Backplane
- 250 \(\mu \text{m} \) PET
- 50 \(\mu \text{m} \) Al (2x)
- \(< 100 \text{ m\Omega} \) vias

OLED
- 3 mm x 3 mm, 400 \(\mu \text{m} \) pitch

Technology specifications
- 3 mm x 3 mm,
- 400 \(\mu \text{m} \) pitch
- 250 \(\mu \text{m} \) PET
- 50 \(\mu \text{m} \) Al (2x)
- \(< 100 \text{ m\Omega} \) vias
Process flow

1. Al-PET-Al laminate
2. Structuring Al
3. Via drilling
4. Via filling
5. Ferrite printing
6. Chip mounting
7. OLED mounting
Via drilling

- Via drilling by laser
 - Aluminum is used as hard mask for CO₂ laser drilling
 - Additional UV laser desmear after CO₂ drilling
 - Optimize via tapering for filling process
 - Design compensation to match foil deformation

![Diagram of Via drilling process]

Images of via drilling results

200 µm
Via drilling

- Desmear after CO\textsubscript{2} drilling
 - Pulsed KrF laser desmear
 - Oxygen plasma desmear

Deposit after CO\textsubscript{2} drilling

Area cleaned with KrF

Before plasma cleaning

After plasma cleaning
Via filling

Via filling by stencil printing
- Enclosed print head (Dek ProFlow) for high-aspect ratio via filling
- Design of experiment on Cu-PET-Cu with CE 3103 WLV
 - Minimize entrapped air bubbles
 - Improve contact between ICA and copper
- Results
 - Single print stroke with medium speed
 - High ProFlow head pressure
Via filling by stencil printing

- Histogram of via resistance (Ω) for 135 vias (9 samples over two printing runs) with an aspect ratio of 4:5 (350 μm depth and 450 μm diameter)

> 95% of vias are below the 100 mΩ target
Chip mounting

- Flip-chip mounting using stencil printed ICA bumps
 - Two test chips
 - IZM28 (2.5 mm x 2.5 mm, 300 µm pitch, 20 contacts)
 - IZM41 (0.9 mm x 0.9 mm, 500 µm pitch, 4 contacts)
 - Bonding parameters: 3 min @ 180 °C and 0.5 N pressure
 - Small contact pads on IZM28 incompatible with ICA printing
Chip mounting

- Flip-chip mounting using stencil printed ICA bumps
 - Low and reproducible resistance on PET-Cu
 - Large variation in contact resistance on PET-Al

COPPER	1	A	62,2	62,2	57,5	57,5
	B	67,4	67,4	63,9	63,9	
	A	61,5	61,5	61,1	61,1	
	B	61,8	61,8	55,9	55,9	
	A	71,5	71,5	57,5	57,5	
	B	59,7	59,7	60,2	60,2	
	A	67,4	67,5	61,1	61,1	
	B	59,2	59,2	58,5	58,5	

ALUMINUM	1	A	295,7	297,4	12085	11900
	B	5000	15700	9856	10170	
	A	89,5	89,6	97,7	97,4	
	B	672,1	675,6	332,9	330,8	
	A	110,9	111	145,5	144,9	
	B	1214	1219	503,4	499,6	
	A	1718	1759	808,1	807,6	
	B	3706	3760	782,3	782,4	
	A	306,2	307,3	464,5	465,1	
	B	465,1	465,1	11065	10900	
OLED mounting

- Structural film adhesive combined with printed ICA bumps
 - Very high bumps required to bridge glass encapsulation
 - Even distribution of OLED contacts for optical uniformity
 - Pre-structured film adhesive applied to backplane before printing
 - Dek PumpPrint technology for printing >1.5 mm high bumps
 - Optimized stencil design and print process make it possible to reliably print pyramidal dots with a 1:2 aspect ratio
 - Higher aspect ratios are possible with optimized material
Increased flexibility - OLEDs

- Flexible OLED technology (Holst Centre)
 - Bottom emission type, fabricated on PEN foil
 - Efficiency of up to 47 lumens per watt (white light)
 - SiN-OCP-SiN barrier stacks (Holst Centre IP) on cathode and anode sides
 - Customized design for IMOLA applications
Increased flexibility - OLEDs

- Flexible OLED technology (Holst Centre)
 - Honeycomb shunt lines for uniform current distribution over large area (> 10 cm x 10 cm)
Increased flexibility - UTCP

Once the backplane is flexible

... flexibility is limited by the rigid components

A solution:
- Thin down chips, down to foil-thickness (± 30 µm, by grinding)
- Make a flexible interposer (e.g. based on polyimide)
- Embeddable in or on the flexible backplane
Increased flexibility - UTCP

- Small I/O pitch (< 100 µm)
- 300-700 µm thickness

- PCB I/O pitch (~ 500 µm)
- Flexible

- UTCP interposer
- Flexible
- Known-Good-Package
- 60-80 µm thickness
Increased flexibility - UTCP

10 µm
Conclusion

Al etching

Ferrite printing

Via filling

Adhesive selection

OLED mounting

Chip mounting